WUHAN, Chiny: Pacjenci często cierpią z powodu bólu pooperacyjnego, dlatego obecnie dentyści pilnie potrzebują informacji o precyzyjnych lekach. W niedawnym badaniu zastosowano model sztucznej sieci neuronowej (ANN) do przewidywania bólu po leczeniu kanałowym (RTC), co ma znaczenie kliniczne dla lekarzy w celu poprawy jakości leczenia, ustalenia zoptymalizowanych planów leczenia i zmniejszenia występowania sporów medycznych.
W dziedzinie algorytmów inspirowanych naturą ANN dokonała najnowszego szybkiego rozwoju. Jest to system oparty na imitacji struktury i funkcji ludzkiego mózgu, który można zastosować do analizy zależności między różnymi predyktorami. SSN można wykorzystać do przewidywania wyników medycznych poprzez wybór odpowiednich struktur sieci neuronowych i masy treningowej, a także do diagnozowania chorób, prognozowania i podejmowania decyzji klinicznych.
Doniesiono, że ANN może umożliwić identyfikację ważnych zmiennych i przewidywanie bólu po leczeniu z dużą dokładnością. To badanie przeprowadzone przez naukowców z Wuhan University miało na celu ocenę dokładności modelu sztucznej sieci neuronowej wstecznej propagacji (BP) do przewidywania bólu pooperacyjnego po RCT.
Model sieci neuronowej BP został opracowany przy użyciu zestawu narzędzi sieci neuronowych MATLAB 7.0 i ustalono funkcjonalną relację projekcyjną między 13 parametrami (w tym czynnikami osobistymi, czynnikami reakcji zapalnych i czynnikami procedury operacyjnej) a bólem pooperacyjnym odczuwanym przez pacjenta po RCT .
Ten model sieci neuronowej został przeszkolony i przetestowany na podstawie danych od 300 pacjentów poddanych RCT. Spośród tych przypadków 210, 45 i 45 przydzielono odpowiednio jako próbki treningowe, walidacyjne i testowe, aby ocenić dokładność przewidywania. Autorzy badania Xin Gao i Xing Xin wraz z zespołem stwierdzili, że dokładność tego modelu sieci neuronowej BP wynosiła 95,6% w przewidywaniu bólu pooperacyjnego po RCT.
Naukowcy doszli do wniosku, że model sieci BP może być wykorzystany do przewidywania bólu pooperacyjnego po RCT i wykazał wykonalność kliniczną i wartość aplikacyjną. Dlatego proponowana metoda może w przyszłości posłużyć jako odniesienie kliniczne.
Badanie zatytułowane “Predicting postoperative pain following root canal treatment by using artificial neural network evaluation”, zostało opublikowane 26 sierpnia 2021 r. w Scientific Reports.
Implanty zębowe stają się coraz bardziej powszechną metodą leczenia bezzębnych pacjentów, coraz ważniejsze staje się zrozumienie ich potencjalnych ...
BOSTON, USA: Niewiele wiadomo na temat czynników społeczno-ekonomicznych związanych z utratą zębów. W nowym badaniu naukowcy z Harvard School of ...
Tylko osoby cierpiące na migreny potrafią zrozumieć uciążliwość objawów tej choroby.
Tylko osoby cierpiące na migreny potrafią zrozumieć uciążliwość objawów tej choroby.
Naukowcy opracowali eksperymentalną szczepionkę, która chroni do 80% myszy przed Staphylococcus aureus, bakterią Gram-dodatnią często występującą w...
Chociaż względne korzyści płynące z gumy do żucia są często przedmiotem dyskusji, wiele badań wykazało, że odmiany gum bez cukru mogą pomagać w...
Co roku u ok. 650.000 osób zostaje zdiagnozowany nowotwór komórek nabłonka wielowarstwowego płaskiego głowy i szyi, a ok. 350.000 ...
Co roku u ok. 650.000 osób zostaje zdiagnozowany nowotwór komórek nabłonka wielowarstwowego płaskiego głowy i szyi, a ok. 350.000 ...
Wg doniesień z The Oral Cancer Foundation, wirusem brodawczaka ludzkiego (HPV), o którym wiadomo, że wywołuje kilka rodzajów nowotworów, zaraża się ...
CAMBRIDGE, Massachusetts, USA: Wiodący amerykański instytut badawczy ADA Forsyth poinformował, że otrzymał fundusze na opracowanie materiałów ...
Webinarium na żywo
czw. 13 listopada 2025
6:00 (CET) Warsaw
Webinarium na żywo
czw. 13 listopada 2025
11:00 (CET) Warsaw
Dr. Poonam Jain BDS, MS, MPH
Webinarium na żywo
pią. 14 listopada 2025
2:00 (CET) Warsaw
Webinarium na żywo
pią. 14 listopada 2025
6:00 (CET) Warsaw
Webinarium na żywo
pon. 17 listopada 2025
6:00 (CET) Warsaw
Prof. Dr. med. dent. Sebastian B. M. Patzelt M.Sc.
Webinarium na żywo
wto. 18 listopada 2025
5:00 (CET) Warsaw
Webinarium na żywo
wto. 18 listopada 2025
7:00 (CET) Warsaw
To post a reply please login or register